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Abstract 

Model-based object pose refinement  algorithms have 
been  applied to rack stacking and pallet load- 
ing/unloading  in the context of automated forklift oper- 
ations  in a warehouse  environment.  These  model-based 
pose  refinement algorithms  enable high-precision align- 
ment by utilizing known geometric  object  models and 
their  salient straight line edges in  matching 3-D graphic 
models to  actual video images. An analysis of pose er- 
ror covariance  using an incremental  least-squares update 
technique has been  performed to examine pose estimate 
precision, and a comparison of pose estimates to man- 
ual  measurements  has allowed a quantification of abso- 
lute accuracy. The algorithms  implemented have actually 
been  incorporated  into  a  CMU/NREC facility with suc- 
cessful demonstrations of rack stacking and pallet load- 
ing/unloading  operations. The pose refinement algo- 
rithms implemented have  also been successfully tested for 
Orbital  Replacement  Unit  (ORU)  module  insertion, and 
these  same  algorithms  could also be  applied to such  space 
applications as autonomous  space assembly and various 
stages of sample return. 

1 Introduction 

Three-dimensional  model-based  computer vision for ob- 
ject recognition and localization has been studied  exten- 
sively in  the  past several decades [l], [3], [4], [6], 171, [lo], 
[ll].   In particular, when the object  model  has several 
salient  straight line edges, the line-based  model  matching 
techniques  can be more effective, since line features  are 
easier and more  reliable to detect  from video  images than 
point  features.  Kumar [lo] showed that  the least-squares 
algorithm for object localization that solves for the ro- 
tation  and  translation simultaneously yields much better 

Alonzo Kelly 
National  Robotics  Engineering  Consortium 

Carnegie Mlellon University 
10 Fortieth  Street 

Pittsburgh, PA 15201 
alonzoQri.cmu.edu 

parameter  estimates  in the presence of noisy data  than 
another  approach that solves  for rotation first and  then 
translation. He further showed that  the infinite model- 
line algorithm  performs  better than  the infinite image- 
line algorithm when extracted image lines have signif- 
icant  broken  segments. The  algorithm derived in  this 
paper  corresponds to  the infinite model-line approach  in 
concept, but  its  mathematical derivations are generalized 
so that  they  can encompass both  camera  calibration  and 
object localization with  one or two camera views. These 
unified derivations  greatly  help a simple, concise formu- 
lation of the simultaneous  incremental update  algorithm. 

The  simultaneous  update  computer vision algorithm 
updates  both  camera  and  object models  simultaneously 
based on a 20-variable least-squares method,  and signif- 
icantly increases the accuracy of 3-D model  matching 
compared to  the conventional  object  localization algo- 
rithm  that does  not  compensate for inaccuracies  in  prior 
camera  calibration. Further,  the  incremental simultane- 
ous update  algorithm is developed to enable pose error 
covariance analysis  in camera  and  object frames. 

Section 2 describes this  incremental  simultaneous  up- 
date  algorithm for object pose refinement.  Thereafter, 
four application  examples of the  algorithm  are described 
that require high-precision alignment.  Section 3 and Sec- 
tion  4  describe high-precision rack  stacking and pallet 
loading/unloading for automated forklift material  han- 
dling, respectively. Section  5  presents high-precision 
module  insertion of an orbital  replacement  unit  (ORU) 
for International  Space  Station  robotic  operations, and 
Section 6 depicts  potential  future  applications  in  robotic 
autonomy for Mars  sample  return. 

2 Line-Based Model Matching 

For a given  3-D object  model  point ( xm,  ym, z,) in  object 
model coordinates,  its 2-D projection  on the image  plane 
(u, u )  in  camera  image  coordinates  can  be  computed by 
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v = - f Y c  (4) 
L C  ' 

where M transforms  object  model  coordinates to world 
coordinates, V transforms world coordinates to camera 
viewing coordinates, and f is the camera focal length 
which is the  distance from the lens  center to  the image 
plane. The 4 x 4  object pose transform M describes the 
object pose relative to  the world reference frame. The 
inverse of the 4x4  camera viewing transform V describes 
the camera pose relative to  the world reference frame. 

The relations  described  above for the perspective  pro- 
jection of a  point  can be directly  applied to  the line-based 
model matching. Since a 2-D projection of a 3-D model 
line is still  a  straight  line, the projected 2-D model  line 
can  be  simply computed by  2-D projections of the two 
endpoints of the 3-D model line. Let (u1, VI )  and (VI, v2) 
denote the  computed 2-D image  plane  projections of the 
two endpoints of a 3-D model line, (xml, yml,  zml) and 
(x ,2,  yn2, zm2), respectively.  Further  let ( X I ,  yl )  and 
( 5 2 ,  yz) denote the two endpoints of the 2-D image  line 
determined by an edge detector.  The normal  distances 
from the image  line  endpoints to  the projected 2-D model 
line  (Fig.  1)  are given by 

hl = (Ax1 + By1 + C ) / L ,  (5) 

hz = (A22 + By2 + C ) / L ,  (6) 
where 

A = vz - VI (7) 

B = UI - U Z ,  (8) 

c = u2v1 - u1v2, (9) 

L = , /AZ  + ~ 2 .  (10) 

In the line-based  model  matching, the least-squares so- 
lution is obtained by minimizing the normal  distances 
between the projected 2-D model lines and  their cor- 
responding  actual 2-D image lines in the least-squares 
sense. 

The line-based  model  matching  can  be  used for both 
camera  calibration and  object localization. In  the cam- 
era  calibration, V and f are  determined for a given M. 
If M = I (identity  matrix),  the camera  calibration is 
performed  relative to  the object model reference frame. 
Since the 4x4  camera viewing transform V can  be  equiv- 
alently  represented by three  translational  displacements 
and  three  rotational  angles,  the  unknown  vector  to  be 
solved for the camera  calibration is defined by 7 variables 
including the camera focal length: 

x c  = ( ~ C , Y C , ~ C , ~ C , B C , Y C , f ) ~ .  (11) 

In  the object  localization, M is determined for a given 
V and f .  The unknown  vector,  equivalently  representing 

Figure 1: Line match 

the 4x4  object pose transform M, to be solved for the 
object  localization is defined by 6 variables: 

XM = ( x M , Y M , ~ M , ~ M , B M , Y M )  . (12) 

When n pairs of corresponding  model and image  lines  are 
given, we have 2n equations 

T 

hl(X) 
H(x)  = : 1 = 0 ,  (13) 

where a 2 x 1 vector hi(x) consists of two normal  distance 
equations of (5) and (6) for the  i-th corresponding model 
and image lines. Note that  x = xc for camera  calibration 
and  x = XM for object  localization.  When n > N/2 
where N is the number of variables of x,  the system is 
overdetermined and  a weighted  least-squares method can 
be  applied to find the solution. 

2.1 Simultaneous Update of  Camera 
and  Object Models 
In  the conventional  approach,  camera  calibration and ob- 
ject  localization  are  performed  sequentially.  This  sequen- 
tial  update assumes that  the camera  calibration  provides 
sufficiently accurate  camera  calibration  parameters for 
the subsequent  object  localization. In some  applications, 
however, accurate  camera  calibration  using  a  calibration 
fixture is difficult. For example,  placing  a  calibration fix- 
ture whenever the camera  parameters  are  changed  due 
to camera pan,  tilt, zoom, or focus control, is impracti- 
cal.  In the simultaneous update  approach,  an object  with 
a known geometric  model that is naturally seen by the 
cameras  during the  actual  operation is used to  update 
camera  calibration as well as object  localization.  Let  us 
consider a  typical  operational  environment  to  perform 
parts  mating of objects M1 and M Z  using two cameras, 
C1 and CZ. The pose of MI is fixed in this derivation, 
since  one  frame  must  be fixed to get  a  unique  solution. 
For the  object model M1 in the camera views C1 and C2, 

Hcl  M~ (xc l )  = 0. (14) 



For the object  model MZ in the camera views C1 and Cz, 

Hcl M~ ( X c , ,  X M ~ )  = 0, (16) 

H c ~ M ~ ( ~ C ~ , ~ M ~ )  = 0. (17) 
Combining the above four equations  with 20 unknown 
variables (18 if the camera focal lengths  are  known) re- 
sults in the simultaneous update algorithm for two ob- 
jects  with two views. 

H(x) = 0, (18) 

x =  [ ::; 1 ,  (19) 
xMz 

where x consists of 7  variables of xcl for camera C1, 7 
variables of xc2 for camera C2, and  6 variables of X M ~  

for object M z .  With more than 10 corresponding model 
and image  lines, the nonlinear  least  squares  solution of 
(18)  can  be  obtained by the Newton-Gauss  method. Its 
k-th  iteration  can  be  described as 

xk+l = xk - (J'(Xk)WJ(Xk))"J'(Xk)wH(Xk), (20) 

where the weight matrix W and  the Jacobian J are de- 
fined in [9]. 

and  the initial  conditions for the  next  iteration  are  set to 
AV1 = AV2 = AM2 = I or xc1 = xcz = XMZ = 0. 
Note that AV1 and AV2 are  pre-multiplied, while AM2 
is post-multiplied. If AV1 and AVg are  post-multipied 
and AM2 is pre-multiplied, they  are all  expressed  rela- 
tive to  the world reference frame (see (1)  and  (2)). 

The above  incremental update procedure  can  be  used 
for  1-view object  localization  (either C1 or C2 used and 
fixed), 2-view object  localization  (C1 and C2 fixed), as 
well as 2-view simultaneous update  (C1  and C2 updated). 
The covariance  error  analysis using the above  incremental 
update procedure  can  provide  a powerful tool in compar- 
ing object pose estimate  errors a t  different  object poses 
under  various viewing conditions,  without  relying  on ex- 
tensive  actual  error  measurement  experiments. 

3 Automated Rack Stacking 

The incremental  simultaneous update algorithm  derived 
above was applied to high-precision  rack  stacking  using 
an  automated forklift in a  warehouse  environment. In 
conventional  computer  vision,  object  localization is per- 
formed by assuming  accurate  camera  calibration param- 
eters  are given and fixed. By contrast,  the simultaneous 
update algorithm updates  both  the  camera  and  object 

2.2 Incremental Update 
An elegant way  of finding the pose esitimation  error is to 
examine the covariance matrix (J'WJ)" resulting from 
the least  squares  solution. The covariance matrix forms  a 
multi-dimensional  error  ellipsoid, and  its diagonal com- 
ponents  can  be  used as error  variances as a  rough  ap- 
proximation  without  considering off-diagonal covariance 
components  (2-dimensional 1 - v standard error ellipses 
should  provide better error  estimates).  When  the  nor- 
mal  distance  equations of (5), (6),  (13),  and  (18)  are ex- 
pressed in pixel units,  the non-weighted  covariance ma- 
trix (J'J)" with W = I can  be  used for the covariance 
error  analysis, by assuming  uniform  one-pixel standard 
deviation for all  image edge measurements. 

If one  wants to use the resulting  covariance matrix  to 
represent  camera pose variances in camera  frames and 
object pose variances in object  frame,  each  iterative  up- 
date of the least-squares method described  above  must 
be  performed  in  incremental  form. Without  the incre- 
mental update procedure, the variance values of the co- 
variance matrix  are associated  with  a  coordinate  frame 
rotated by either  one,  two, or three  rotational angles of 
the solution.  This  mix-up  makes it impractical to inter- 
pret  the variance data.  In  the incremental  simultaneous 
update, unknown  variables xc1, xc2 and XMZ are associ- 
ated with  incremental  adjustments of camera and  object 
poses AV1,  AV2, AM2. In  each  iteration,  they  are 
updated by 

VI = AVI  VI, (21) 

V2 = AV2  Vg, (22) 

M2 = Mg AM2, (23) 

Figure 2: Automated  rack  stacking  with  reflective 
surface  markings.  (top)  left  camera  view  and  (bot- 
tom)  right  camera  view. 



(Fig. 2) to enable automated, reliable  identification of 
surface  marking edges  by an image line detector.  The 
covariance error  analysis of the rack  pose estimate of the 
upper rack relative to  the lower  rack indicates that  the 
relative pose error standard  deviations  are within 0.5 cm 
and 0.6" for the front two legs (table 1). The relative pose 
error for the two rear legs was as large as 1.2 cm along the 
vertical  axis. This is because  only the front legs' fiducial 
marks  are  used  in  determining the relative  rack  pose, 
and all four fiducial marks  are small at the same  height. 
This vertical  position  error  is, however, not that critical 
in terms of alignment  since it is along the leg insertion 
direction. When a 8-mm zoom lens was used  instead 
of 16-mm or when the image  resolution was halved to 
320x240, the pose estimation  errors were doubled. 

Figure 3: Automated rack  stacking  top view. 4 Pallet Loading  and Unloading 

pose 
right leg left leg right leg left leg error 

rear  rear  front  front 

Table 1. Rack  stacking  relative pose estimation  error of 
the two-view simultaneous update  method for the  setup 
shown in  Fig. 2 and 3 with a 16-mm zoom  lens and 
640x480 image  resolution for each camera. 

pose parameters  simultaneously,  compensating for the 
inaccuracy  in  initial  camera  calibrations and  thus en- 
abling high-precision object  localization.  Typical  racks 
in warehouse applications (e.g., automobile  manufactur- 
ing factory) are very large, and  thus two cameras are 
needed for automated stacking of a upper rack  on top of 
a lower rack.  One  camera sees the front left-side legs of 
the lower and  upper racks, while the  other  camera sees 
only the front  right-side legs of the two racks  (Fig. 2 and 
3). In  the  initial rack stacking  test  setup installed at 
the NREC/CMU warehouse facility, two cameras were 
mounted on the forklift with the inter-camera  angle of 
about 90" in diverging directions. A minute  camera ori- 
entation change of only 0.036" results  in  one pixel error 
for a 16-mm zoom  lens with a 640x480 pixel image res- 
olution. Further  the two  cameras  are  relatively  far  apart 
by (about 100 cm), and  thus  it would be very  challeng- 
ing in terms of a sturdy mechanical design. This is why 
the simultaneous update  algorithm  that  compensates for 
inaccuracies  in camera  calibration  helps to achieve  high- 
precision  rack stacking. Further  the algorithm  computes 
the relative  positioning  between the two racks  not relying 
on absolute  positioning for rack stacking. 

In our  initial  testing, two rectangular fiducial marks 
were attached  on  the front and side  surfaces of each  leg 

With  the goal of estimating the pose of the pallet  used 
in a warehouse for transporting  materials, a visual  fork 
hole detector was integrated  and  tested  with a model 
based  object  localization  algorithm.  The fork  hole detec- 
tor identifies edges of a pair of fork  holes from a given 
camera  image of a pallet.  The  detector goes through  the 
following  five steps to achieve its goal: 1) Canny  edge de- 
tector, 2) Lowe's straight line detector, 3) merge  straight 
image lines, 4) find rectangles  using  parallelism condi- 
tions, 5) detect  the  best-match  rectangle pair  with the 
highest match score. After  detecting fork  hole  edges, the 
pallet pose  is then  determined by either a one-view  ob- 
ject  localization  algorithm or a two-view simultaneous 
update  algorithm. A typical  camera  image showing both 
a fork and a pallet  with fork  holes in  an  automated pallet 
loading/unloading  environment is shown in Fig. 4. 

In  order to investigate the pose estimation  error at dif- 
ferent  pallet poses, a fork  hole mockup was built as a lab- 
oratory  setup. Using this  setup, pallet images with fork 
holes  were obtained  from  two different cameras for five 
pallet  orientations  ranging  from -40 to +40 yaw at four 
different distances  ranging  from 2 to 5 meters. The two 
cameras were located  approximately 90 cm  apart along 
a vertical  axis.  Figures 5 and 6 show typical  images of 

Figure 4: A fork and a pallet  with  fork holes. 



Figure 5: (top) camera image of fork holes, and  (bot- 
tom) Canny/Lowe line detector output 

various  stages of the fork-hole detector.  Every  set of im- 
ages that we took  produced good image lines except one. 
In  this one  exceptional  case, the Canny/Lowe line de- 
tector  produced  two  oblique, half-size vertical lines in- 
stead of one straight vertical line for a fork hole. The 
current  algorithm  implemented was still  able to handle 
this condition. In  other words,  in this  laboratory  setup 
with good lighting/imaging  conditions, the implemented 
fork  hole detector  detected the fork  holes with a 100% 
success rate. However, as the images get less pristine, 
due to less than ideal  lighting  circumstances  encountered 
in the warehouse environment, we  will definitely need a 
more  robust scheme of detecting fork holes. 

The  results of the pose error covariance analysis for the 
1-view object  localization are  tabulated in  Table 2 for 0" 
pallet  orientation,  in  Table 3 for 20" orientation,  and in 
Table 4 for 40" orientation.  In  general, the position align- 
ment  error  decreased as the fork approached the pallet 
with the pallet  distance  getting  smaller. For 1-view  ob- 
ject  localization, the position  alignment  error  increased 
as the pallet  orientation  increased away  from the parallel 
0" angle. At the 0" and 20" pallet  orientations, the posi- 
tion  alignment  errors along the x and y  axes  (orthogonal 
to  the fork insertion axis) were about 0.2 cm at a pal- 
let distance of 1.8 m. However, at  40" pallet  orientation, 
the position  alignment  error  increased  markedly to  about 

Figure 6: (top) rectangle filter output, and (bottom) 
rectangle-pair filter output 

0.9 cm. This large error  should  not be a problem,  since 
the pallet  orientation would be very close to  the paral- 
lel 0" angle  during the  actual  automated fork insertion 
operations.  In  terms of the pose orientation  estimation 
error, the orientation  error  about the x-axis  (pallet  pitch 
angle  relative to  the fork) was  significantly  larger than 
the  orientation error about  the  other two  axes. This is 
because the two  fork  holes of the pallet  have the same 
narrow  vertical gap, while they  are wide apart horizon- 
tally  with a larger horizontal  gap for each hole. This 
pitch  orientation  error is less critical  compared to  the 
yaw orientation  error,  since the forklift and  the pallet 
are normally operated  on  the flat horizontal floor. The 
above  experimental  results  indicate that a single camera 
view provides sufficient accuracy in  object  localization 
for pallet  loading/unloading, as long as the camera  can 
be  mounted firmly. 

Even  though  a single-view object  localization is suf- 
ficient, the covariance error  analysis of the two-view si- 
multaneous  update  algorithm was  also performed.  In this 
method,  the fork models and their  mating fork  hole mod- 
els are needed to  update  both camera  calibration  and 
object  localization. The  results showed that  the position 
alignment  error was reduced significantly at the 20" and 
40" pallet  orientations.  Note also that each  camera  gets 
good depth information data due to  the large  orientation 



pose 
4.877 m 3.658 m 2.438 m 1.829 m error 
dist D dist  C dist B dist A 

UA= (cm) 

2.01 1.17  0.55 0.33 UA= (cm) 
0.50 0.20  0.12  0.01 Q A ~  (cm) 
0.47  0.37  0.25  0.20 

QAO, (") 

0.94 0.31  0.16  0.13 QAOz (") 
4.14 2.52 1.20 0.72 UAOg (") 

5.66 
. , ,  

8.53 14.69  17.04 

Table 2. Pallet pose estimation  error  with the pallet ori- 
entation at 0 ". 

I pose I dist A I dist B I dist  C I dist D I 

the ability of the pose estimation  algorithm to accurately 
estimate the pose.  Since the four edges of each fork  hole 
yield a planar,  rectangular  shape, the pose estimation 
error  from the 1-view object  localization could be  quite 
large depending  upon the orientation  angle. A covari- 
ance  error  analysis was performed for the following three 
cases: Case  1) 2 vertical lines with 2 inner  vertical lines 
missing, Case 2) 3  vertical lines with 1 left inner  vertical 
line missing, and  Case  3) 4  vertical lines with  no ver- 
tical lines missing. Case 1 yielded very  poor  estimates 
in pos-x  (along the horizontal  line) and rot-y  (rotation 
about  the axis  parallel to  the vertical  lines), which agree 
with  earlier  experienced  results  with  very long rectangles. 

I error I 1.829 m I 2.438 m I 3.658 m 1 4.877 m I 
E ! 

Table 2. Pallet pose estimation  error  with the pallet ori- 
entation at 20 ". 

dist A dist B dist C dist D 
1.829 m 2.438 m 3.658 m 4.877 m 

2.79  17.47 
2.43 4.71 
0.63  1.01 3.25 
0.21  0.29 0.47 

Table 2. Pallet pose estimation  error  with the pallet ori- 
entation at 40 ". 

angle.  However, the position  alignment  error  increased 
at  the 0" pallet  orientation.  The  reason is that  the forks 
have only three line segments each and  the fork  holes 
are  planar  with a very narrow  vertical gap,  not provid- 
ing sufficient matching line data  to  update  both camera 
calibration and  object localization. Also note  that  at 
the 0" pallet  orientation,  both  cameras  do  not  get good 
depth information  since all the fork  hole line segments 
are in the plane  parallel to  the camera  image  plane.  In 
the previous rack stacking,  two  orthogonal fiducial marks 
were  3-dimensional. One way to remedy the simultane- 
ous  update  algorithm  to cope  with insufficient line seg- 
ments data is to  put some  constraints  on the 6-dof  cam- 
era pose parameters. For example, the z-axis positions 
of both cameras  could be fixed. These  additional con- 
straints could be decided  empirically  based  on the camera 
mount mechanical  design. 

To gain  insight into  the performance of the 1-view  ob- 
ject localization algorithm for various  object pose  con- 
ditions,  further  tests were performed. Since the number 
of detected  image lines are so small that seemingly in- 
significant variations could result  in  drastic  changes  in 

Figure 7: Thee  different  cases of the fork hole  im- 
age  lines  detected. (top) 2 vertical  lines,  (middle) 3 
vertical  lines,  and  (bottom) 4 vertical  lines  detected. 

4 vert  lines 3 vert  lines 2 vert  lines 

25 7 

Figure 8: Position  and  orientation  errors for 3 cases 
of vertical  lines. 
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This is because a long rectangle  can rotate significantly 
about  the y-axis and still  produce a very similar  image 
on an angled  camera image. The x-position of the center 
between the two vertical lines changes due to  the fore- 
shortening effect of perspective  projection. However, as 
soon as the number of vertical lines increases to three or 
above, the uncertainty of the x-position  reduces dramat- 
ically. The  third vertical line effectively limits a large 
rotation  and  thus  the x-position. The  plots in Fig. 8 
clearly  show this effect. 

Integration of the above  mentioned covariance analysis 
with a maneuverability  constraint  algorithm was done  in 
order to  create  an  algorithm for predicting the probability 
of success for the given conditions. The  uncertainty val- 
ues calculated by the pose estimation  algorithm  are used 
to do  a  grid  calculation of maneuverability  constraint vi- 
olations, and  then  the maneuverability  constraint algo- 
rithm calculates the probability of success from the  ratio 
of successes to  attempts.  This  algorithm could be used as 
part of a higher level risk assessment for vehicle behavior 
decisions. 

5 ORU Module Insertion for Space Sta- 
tion Applications 

An immediate  potential  application of the two-view  si- 
multaneous  update  object pose refinement  algorithm is 
for International  Space  Station (ISS) robotics, since the 
camera viewing problem is a concern  in  ISS  telerobotic 
operations and vision system  assistance is needed for 
high-precision alignment. For instance,  during the orbital 
replacement unit  (ORU)  insertion  task, the end effector 
close-up camera view  is  occluded  by the  ORU, while the 
overhead and  other  cameras provide  limited views. Due 
to  this visual  occlusion and limited viewing problem, it 
is often difficult to ensure baseline manual  teleoperation 
will  reliably maintain the alignment  within the precision 
requirement. For example, the alignment  requirement 
for ISS  remote power controller  module (RPCM)  ORU 
insertion is f0 .6  cm for each  translation  axis  and f 3 "  
for  each rotational  axis [2],  [12]. 

Both  sequential and  simultaneous  update  algorithms 
were applied to  an RPCM-like  ORU  insertion task us- 
ing  two  views (side and overhead views C1 and Cz) for 
comparison.  Both  cameras were set by manual  pan,  tilt, 
zoom, and focus control. The camera focal lengths were 
approximately 50 mm (vertical field of view angle 5.5") 
for the side camera  and 25 mm (11") for the overhead 
camera.  The  inter-camera  angle  between the two camera 
optical  axes was approximately 50". The side  camera was 
about 7.5 m away from the receptacle, and  the overhead 
one was about 3.5 m away. As expected, the sequen- 
tial  update, consisting of the camera  calibrations using 
the ORU model edges followed  by the object localization 
using the receptacle  model edges, did  not yield a very  ac- 
curate model matching. Fig. 5 shows the model  matching 
result  obtained  with the simultaneous  update.  Note that 
the receptacle  model is very well  aligned in both  camera 

views.  Unlike the sequential  update,  the simultaneous 
update algorithm updated  both  the  camera  and  object 
models simultaneously, achieving accurate  matching even 
with  rough,  approximate  initial  camera  calibrations. 

In  the current  operational  procedure for the  RPCM 
ORU insertion task,  the  operator first  enters  model 
points  and  their corresponding  image  points  interactively 
by using a mouse to provide an  initial coarse  matching. 
A point-based  simultaneous  update  algorithm is used for 
the initial  coarse  model  matching.  Thereafter, a local line 
detector [5] and  the line-based simultaneous  update al- 
gorithm  are used for automated fine matching and pose 
refinement. As the ORU  gets closer to  the receptacle, 
new update is performed to increase the alignment pre- 
cision. No operator-interactive data  entry is needed  any 
more, since fairly accurate  model  matching is  available 

Figure 9: Simultaneous  update of camera  and  object 
models  using  both  camera  views. 



from the previous update.  This  intermittent pose up- 
date/refinement  procedure is repeated at the next  via 
points,  until the ORU  reaches the alignment  ready posi- 
tion for insertion. The above  operational  procedure was 
successfully used to demonstrate high-precision ORU in- 
sertion  within the f 0 . 6  cm and f 3 ”  alignment precision 
requirement for various viewing and  object pose  condi- 
tions  both at Jet Propulsion  Laboratory and at NASA 
Johnson  Space  Center [8]. 

In  this ISS RPCM  ORU insertion  application, the 
RPCM ORU and  its receptacle have a sufficient number 
of straight line edges, and  the line-based model  match- 
ing  technique  does not specifically require  artificial vision 
targets or fiducial markings  on the ORU surfaces. Use of 
natural geometric  features of man-made  objects such as 
object  straight-line edges makes the model-based  object 
pose refinement  not only versatile but more  robust  un- 
der  poor viewing and  harsh lighting  conditions. Vision 
targets  attached on object  surfaces  are  in  general much 
more  sensitive to camera viewing and lighting  conditions 
compared to object-outline  natural edges. Accurate po- 
sitioning of vision targets is also cumbersome and expen- 
sive for space  applications. 

Another  important  advantage of the above  model- 
based  object pose refinement  approach for ISS robotic 
applications is that  its software  does  not have to  be in- 
stalled  onboard. It can be installed on the ground as a 
cost-effective solution. With ground-based  object pose 
refinement, two control  modes  can  be considered for ISS 
telerobotic  operations: 1) ground-assisted  onboard con- 
trol  and 2) ground  remote  control.  In the ground-assisted 
mode, an on-board crew member  performing  such a task 
as ORU insertion is assisted  by  model-based  object pose 
refinement  on the ground. Video  images  received  on the 
ground  are  used to determine the relative  position be- 
tween the ORU  and  the receptacle, which  is then  sent to 
the on-board crew as a precision alignment  aid. In  the 
ground  remote  control  mode, a ground  operator  controls 
the space  manipulator  system  directly by  issuing robot 
auto move commands, while an  onboard crew member 
may  monitor the robot  motion.  Supervisory  control  sup- 
ported by model-based  object pose refinement is essential 
for ground  remote  operation,  since  simple  manual teleop- 
eration  has  undesirable  safety  problems  due to a  typical 
2-8 s round-trip  communication time delay  between a 
ground  control station  and  the low Earth  orbit. 

6 Potential future  applications  in Mars 
Sample Return 

Object pose estimation is essential  in  many of the stages 
involved in a Mars  Sample  Return mission. In a few 
of these, a priori  information (Le., physical  dimensions) 
about  the  object whose  pose needs to  be  determined 
clearly makes a model-based  technique very attractive. 
A rover returning to  the lander to deposit the collected 
samples is one  such  situation.  Another is the  the au- 
tonomous  rendezvous between the sample  orbiting Mars 

and  the retrieval  probe.  These  scenarios could greatly 
benefit from the model-based pose estimator  used  in the 
algorithms above. 
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